PXI Modules 3030 Series RF Digitizers

A passion for performance.

Fully featured wideband PXI RF digitizer modules for complex signal analysis applications in communications system test

- RF down converter with frequency breaks at 3 GHz, 6 GHz and 13 GHz
- Input level control up to +30 dBm with up to 31 dB of RF input level control
- Maximum sensitivity to typ -150 dBm/Hz
- Instantaneous (-1 dB) IF bandwidths of up to 36 MHz or 90 MHz
- Digitizer ADC resolution of 13 bits or 14 bits sampled at up to 250 MHz
- Digital down converter variable sample rates up to 250 MSa/s
- 75 dB spurious free dynamic range
- 75 dB intermodulation free dynamic range
- Excellent level accuracy of typically 0.3 dB
- List mode for fast frequency and reference level settling
- Up to 512 MByte sample memory
- Real time streaming output of sample data
- 'PXI Studio' VSA/VSG application software

Analyzing RF communications signals has never been more flexible

The 3030 Series range of RF Digitizers used with a 3010 Series synthesizer module provide precision conversion of RF signals into digital IF or I and Q data. Used with PXI Studio application software, the 3030 Series RF Digitizer family provides class leading vector signal analysis of RF signals with functionality and performance ideally matched to the needs of RF test systems for manufacturing and design verification.

There are 5 different RF Digitizers to choose from. Each model provides a different combination of RF frequency range and measurement bandwidth.

All 3030 Series RF Digitizer modules offer high linearity, low noise, excellent level accuracy and superior IF bandwidth flatness, making them especially suited for the analysis of WLAN, WMAN and 2G, 3G and 4G cellular radio signals as well as general purpose analog and complex modulation signals used in modern communication systems.

PXI Studio Application Software

PXI Studio is a software application for use with all Aeroflex 3000 Series PXI modules. This highly flexible application can provide vector signal generation and vector signal analysis of complex modulated signals. As standard PXI Studio provides a single integrated user interface to all Aeroflex PXI modules and performs spectrum and time domain analysis of sample data for general purpose RF component testing and alignment of radio communications transceivers. Optional measurement suites can be added easily as plug-ins. Each provides an intuitive and highly flexible graphical user interface. A full description and specification for each measurement plug-in is provided in separate data sheets for 3030 Series RF Digitizer measurement suite options.

PXI Studio Spectrum Analyzer Screen Shot

Advantages of PXI

The 3030 Series RF digitizers offer significant economies compared to general purpose rack and stack instruments without compromising performance. In part this is achieved by exploiting the benefits of the PXI specification, an industry standard open architecture for modular instrumentation. Using PXI enables faster measurement speed, smaller size and greater flexibility for easier system integration and future system evolution.

Applications

The 3030 Series RF digitizer is an essential component within any development or manufacturing RF test system designed around the needs of advanced digital communications standards for wireless data. Whether the application is for test, measurement or system emulation, the 3030 Series delivers the functionality and performance required. When used in conjunction with other Aeroflex PXI RF modules, chassis and system controllers complete RF test systems can be configured. 3036 adds extended frequency range to 13 GHz to enable harmonic measurement of fundamental signals below 6.5 GHz.

For each Digitizer variant there is a complementary* 3020 Series digital RF signal generator module able to produce wideband linear complex modulated RF signals up to 6 GHz. Aeroflex PXI modular instruments are supplied as individual single modules for use within any compliant cPCI or PXI chassis supporting 3U high modules and a slot 1 PXI system controller supporting Microsoft Windows operating systems and NI VISA. Alternatively Aeroflex can supply PXI modules pre-configured within a PXI chassis with a slot 1 PXI system controller, (see order information for further details).

*excluding 3036

3000/3000B Chassis

Performance Highlights:

Wide Frequency Range:

There is a wide range of frequencies to choose from: 250 kHz or 330 MHz to 3 GHz 250 kHz or 330 MHz to 6 GHz 250 kHz to 13 GHz

Level Range: Peak signal powers up +30 dBm can be input directly and with a maximum sensitivity down to typically -147 dBm/Hz very low level signals are easily discernible from noise, especially useful when measuring transmitter spurious outputs.

Control of RF input level is provided using reliable, high speed electronic switched attenuation. To optimize down converter operating conditions, RF attenuation is selectable in 1 dB steps to a maximum of 31 dB (4 dB steps to 28 dB in 3030A). IF attenuation* is selectable in 1 dB step to 35 dB to optimize ADC operating point. Together they allow optimization of dynamic range for a wide range of input signal powers and signal characteristics.

*set automatically within PXI Studio application software

Level Accuracy: With a total measurement uncertainty of typically ± 0.3 dB, accurate RF power measurements in high volume manufacturing are made possible. Together with $\leq \pm 0.05$ dB repeatability error ensures that high yields can be maintained.

High Dynamic Range: The 3030 Series is designed for difficult transmitter measurements such as burst power in TDD and TDMA systems and spectral emissions on WLAN/WMAN, 2G, 3G and 4G cellular terminals. Measurement of GSM burst power ramps with over 80 dB dynamic range is possible in a single step. ACLR and spectral mask measurements on WCDMA signals can also be made in a single step with a measurement range of typically 68 dB for ACLR.

Wide Bandwidth: -1 dB bandwidth of up to 90 MHz is achieved. Amplitude flatness of ± 0.1 dB is maintained over a 5 MHz bandwidth and ± 0.25 dB flatness is maintained for bandwidths up to 67 MHz. Phase flatness of $<\pm 0.03$ radians is maintained over 67 MHz bandwidth.

Low Phase Noise: The 3030 Series modules are all designed to be used with either a PXI 3010 or 3011 RF synthesizer module. This provides a low noise agile local oscillator signal from which the 3030 Series phase noise is defined.

RF Frequency	Typical phase noise at 20 kHz offset (dBc/Hz)
50 MHz	-112
500 MHz	-118 (3030A/3035) -112 (3030C/3035C/3036 only)
2 GHz	-116
5 GHz	-108

Noise floor at 2 GHz is typically -138 dBc/Hz from 10 MHz offset.

Fast Switching

Frequency settling can be achieved in typically $250 \ \mu$ s, (3010 opt 01 fitted). This makes the 3035 ideal for high productivity RFIC testing.

Flexible ADC

Sample data is available as digital IF samples at the full ADC sample rate or as digitally down converted, decimated and re-sampled I & Q data samples at a user defined rate. Sample data can be both block transferred across the PCI interface and streamed out of the front panel data interface. Samples rates of up to 90 MSa/s can be supported for streaming applications e.g. in radio system emulation type applications or for producing uninterrupted time records for RF events. Captured I&Q sampled at up to 250 MSa/s can be block transferred from on board memory over the PCI bus. On board sample memory supports acquisition of up to 256 M x 16 bit samples. Data transfer to the PCI backplanes can be pipelined (overlapped) with data acquisition to accelerate test speed. Furthermore the driver software provides the ability to commence processing of captured IQ whilst acquisition is still in progress for near real time measurement speed.

Data reduction is supported whereby the user can select a subset of acquired data to be passed for processing. This reduces unnecessary data transmission and can help improve measurement speed. This can be especially useful for TDMA type systems such as GSM. It makes it possible to only transfer active burst data for analysis reducing the number of samples to transfer by approximately 80%. Data acquisition can be edge triggered and the sample length defined by the user or it may be gated in which case the acquisition period is defined by the gate width.

Small Size

The 3030 Series modules are unparalleled in terms of size. Test systems can be assembled occupying a fraction of the space required for conventional instrumentation. Each module occupies just 2 or 3 slots in a 3U PXI rack. With a single additional slot to accommodate the 3010 RF synthesizer the complete Wideband Digitizer occupies either 3 or 4 slots

Triggering and Synchronization

The 3030 Series highly versatile acquisition trigger modes maximize flexibility in synchronized measurement applications. Acquisition can be triggered by software or hardware triggers including the PXI trigger bus, local bus, star trigger as well as via front panel TTL and LVDS inputs. Internal IF video and frequency selective IQ level triggering can be derived from the received signal with facilities to prevent false triggering from noisy signals. All trigger modes are supported by a user definable +ve and -ve trigger delay. A trigger hold off mode is provided to allow control of trigger rearming. This can be especially useful when acquiring TDD type signals as used in WLAN and WIMAX.

List Mode

This feature enables the digitizer to be pre-loaded with up to 128 combinations of different frequency and level settings. All digitizer internal hardware settings are pre-calculated making re-selection of a new frequency possible in typically 250 μ s, (3010 opt 01 fitted) while still maintaining level accuracy. This feature is ideally suited for fast mobile phone transmitter alignment applications and is complemented by similar features in the 3020 Series RF signal generator in support of the corresponding fast mobile phone receiver alignment. Channelized timer mode allows setting of variable list dwell period (in output samples).

Software

Each RF digitizer is supplied with a variety of software including; Aeroflex PXI Studio application software with standard and optional plug-ins to measurement libraries. Each digitizer is also supplied with various driver software and soft front panels.

Driver Software: All 3030 Series modules are supplied with multi layered software APIs and GUIs starting with a common low level VXIpnp compatible 'module' driver and a single high level 'RF Digitizer' driver for the combination of a 3030 Series and a 3010 Series module. Each driver is supplied as a .dll interface. Additional .net and COM interfaces are provided for the RF Digitizer level driver. Both the module and RF Digitizer drivers are supported with associated soft front panel graphical user interfaces to aid manual operation and debugging during application development.

3030 Series Module Soft Front Panel

PXI Studio Spectrum Measurement Suite Highlights

As standard the 3030 Series modules are supplied with a spectrum analyzer plug-in for use in PXI Studio and a spectrum measurement .dll interface for application developers providing frequency and time domain analysis of 3030 Series digitized I & Q data.

The spectrum analyzer plug-in provides a graphical user interface for manual operation in bench top applications. Using the spectrum analyzer plug-in analysis can be performed for frequency spans up to 200 MHz. The resolution bandwidth is continuously variable from 1 Hz to 10 MHz using 3 dB or noise equivalent bandwidth windows. A range of spectrum measurement functions are also provided including:

Channel Power and Adjacent Channel Power Measurement: The user defines the channel configuration to be measured (i.e. channel width, channel spacing, center frequency, etc). The measurement

For the very latest specifications visit **WWW.aeroflex.com**

then computes the central channel RMS power as an absolute and the adjacent channel powers relative to this from the FFT spectrum. Four adjacent channels are examined (two either side of the central channel). In manual mode up to 99 channels can be specified each with arbitrary channel spacing and channel width.

Occupied Bandwidth: is calculated from the FFT spectrum by a function that returns the bandwidth in which a user defined percentage of the total signal power is occupied.

The FFT spectrum can be configured as either RMS averaged or peak hold in which case the function will output an averaged result or retain peak values if repeatedly called. The number of averages is user defined.

Markers: A marker power function is provided together with a marker peak find and a next peak search function. These enable measurement of discrete signals within the FFT spectrum.

Time Domain: Time domain analysis functions include computation of average power of a range of IQ data samples plus power and frequency versus time. The time window for analysis can be the entire IQ sample array or any user defined subset.

The underlying analysis library components of the spectrum measurement .dll are also provided. These are hardware independent functions that can be used to develop bespoke spectrum analysis applications. To assist with programming, source code examples and user help are provided for a wide variety of different applications development environments including LabView, LabWindows CVI, VB and Visual C.

Optional Measurement Suites

Measurement suites are also available for measurement of GSM/EDGE, WiMAX WLAN, UMTS uplink, Bluetooth, LTE FDD/TDD, TD-SCDMA, cdma2000 FM reverse link and Generic PSK/ transmissions. (See separate datasheets for 3030 options). These provide measurement of power, modulation quality and spectrum parameters in accordance with the relevant standards for mobile terminal testing, ideal for both production line and development laboratory use. Each application library is supplied with example source code to help familiarize the user.

Customer Support

Users can elect to purchase PXI modules with optional warranty extensions. Standard extended warranty provides either a 36 month or 60 month warranty period plus the benefits of guaranteed product repair times in the event of failure. Standard extended warranty can also be provided inclusive of scheduled calibration. On request Aeroflex can provide customized premium warranty support designed around your specific needs.

SPECIFICATION

All 303x specifications are defined when used in conjunction with the 3010/11 RF Synthesizer PXI module and driver software supplied with the module.

Note: Not all functionality described below is exposed in the Aeroflex software applications provided but is available in the programming user interfaces.

FREQUENCY

Range				
RF inpu	t:			
3030A	330 MHz to 3.0 GHz			
3030C	250 kHz to 3.0 GHz			
3035	330 MHz to 6.0 GHz			
3035C	250 kHz to 6.0 GHz			
3036	250 kHz to 13 GHz			
IF input:	(3030A/3035 only)			
Centered on 77.76 MHz				
Resolution				
≤3 GHz	:: 1 Hz			

>3 GHz, ≤6 GHz: 2 Hz

- >6 GHz, ≤9 GHz: 3 Hz
- >9 GHz: 6 Hz

Accuracy

As per frequency reference

Settling Time (LIST mode)

Typical times taken to be settled at final frequency

30	3010 Loop bandwidth		3030C/3035C		
			<500 MHz	>500 MHz	
Normal	3010 opt 01 fitted	250 µs	2 ms	325 µs	
	3010 opt 01 not fitted	1.1 ms	3 ms	1.2 ms	
Narrow			10 ms		

Up to 3 GHz settled to 0.7 ppm or 1 kHz whichever is the smaller

>3 GHz, \leq 6 GHz settled to 2 kHz

>6 GHz, \leq 9 GHz settled to 3 kHz

>9 GHz settled to 6 kHz

Typical frequency settling for 3030C/3035C/3036

Response is a composite of 10 devices at different settling frequencies. Freq error direction has been adjusted where necessary to display a positive response.

LEVEL

Input Coupling

AC coupled

Maximum RF Input Power

Model	Maximum Input Power (dBm)	RF Attenuation (dB)	Conditions
	+22	8	
3030A	+20	4	
	+16	0	
3035	+30	10	10 dB IF Attenuation
3030C			
3035C	+30	10	
3036			

Max IF input (3030A/3035 only)

+10 dBm with 0 dB IF attenuation

RF Input Attenuator

3030A 0 to 28 dB in 4 dB steps 3030C/3035/3035C/3036 0 to 31 dB in 1 dB steps

IF Attenuator

0 to 35 dB in 1 dB steps

RF Input Return Loss (typical)

3030A

Typically 16 dB (8 dB input attenuation) 3030C/3035/3035C/3036 ≤6 GHz, 16 dB >6 GHz, ≤10.5 GHz 14 dB >10.5 GHz, ≤13 GHz 10 dB

Level Accuracy (RF input, 23°C ±5°C)

Valid for signals with <5 MHz occupied bandwidth at the tuned frequency and S/N ratio >40 dB

Frequency	3030A	3035	3030C	3035C	3036
<500 MHz	<±0.6 dB, typically ±0.3 dB		$<\pm1.0$ dB, typically ±0.5 dB		±0.5 dB
≥500 MHz, ≤3 GHz			<±0.7 c	B, typically	±0.3 dB
>3 GHz, ≤6 GHz	N/A <±1.0 dB		N/A	<±1	.0 dB
>6 GHz	N/A	N/A	N/A	N/A	$<\pm2.0$ dB

For 3030C / 3035C and 3036 Level accuracy is unspecified with RF attenuation set to >16 dB AND the pre-amplifier set to enabled.

Level Temperature Stability

3030A	±0.01 <i>dB</i> /°C
3030C/3035/3035C/3036	\leq 6 GHz ±0.02 dB/°C
	$>6~GHz~\pm0.06~dB/^{\circ}C$

Level Repeatability

After warm up following a return from a change in frequency or level. Valid for at least 2 hours and excluding temperature influence

3030A	<±0.05 dB
3030C/3035/3035C/3036	\leq 6 GHz $<\pm0.08$ dB
	>6 GHz <±0.15 dB

Level Settling Time (list mode and front end mode auto)

	dB error from final settled level at 250 μ s at 750 μ s				
Frequency	3030A	3030A 3035 3030C 3035C			
≤3 GHz		±0.3			
>3 GHz, ≤6 GHz		±0.3		±0.5	
>6 GHz				±1.0	±0.5

LIST MODE

List Mode Channel Parameters

Frequency, level (defined as input level or as RF and IF attenuator settings), dwell period (in output samples)

List Addresses

128 numbered 0 to 127

Settling Time

See frequency and level data

Address Sources

Manual (software commanded)

External (hardware triggered)

Internal (counter timer)

External Mode Trigger Sources

PXI trigger bus, star trigger, PXI local bus, LVDS aux 1 to 5, TTL+ve, TTLve

Counter Mode (internal)

Time mode (common to all channels) dwell time 250 µs to 10 seconds with resolution 0.1 μ s

Sample Mode (Channelized): up to 232 output samples

SPECTRAL PURITY

SSB Phase Noise (Typical, dBc/Hz)

FC	2 GHz		5 GHz	12 GHz	
		Loop Bandwidth			
Offset	Narrow	Wide	Na	rrow	
100 Hz	-55	-85			
1 kHz	-85	-103			
10 kHz	-114	-103			
20 kHz	-116	-110	-108	-100	
100 kHz	-133	-130			
1 MHz	-136	-136			
10 MHz	-138	-138			

Phase noise below 100 Hz is dependent upon reference phase noise.

LINEARITY AND NOISE

(Specifications apply to RF input)

Third order Intermodulation

 $2~\mbox{CW}$ tones at up to 0 dBm per tone, 500 / 1500 / 5000 kHz spacing, manual mode, No Pre-amplifier

Typically 75 dB1

⁽¹⁾Tuned Frequency \geq 30 MHz for 3036

Adjacent Channel Leakage Ratio (ACLR) in any 3GPP frequency band <3

3030A/3035:

Better than 63 dB ACLR on 3GPP (downlink test model 1)

Typically 68 dB ACLR on 3GPP uplink

3030C/3035C/3036:

Better than 60 dB ACLR on 3GPP downlink (test model 1)

Typically 65 dB ACLR on 3GPP uplink

Spurious (typical excluding IF image frequencies and harmonic responses) $^{\omega}$

3030A/3035:

-75 dBc

3030C/3035C/3036:

-70 dBc

(1) Spurious specification applies for signals input within the analysis bandwidth at the Digitizer reference level

Harmonic Distortion

3036: Typical performance for tuned frequency= 2nd Harmonic of Incident Frequency

RF Attenuation = 31 dB. No pre-amplifier

	Harmoni	Harmonic distortion (dBc) 2nd Harmonic of			
	Incident	Incident Frequency			
Incident Power	850 MHz	1900 MHz	2500 MHz	5000 MHz	6500 MHz
0 dBm	-78	-88	-65	-72	-70
-5 dBm	-83	-95	-72	-76	-75
-10 dBm	-90	-100	-79	-82	-78

Residual Responses (no signal input)

No signal input, RF input terminated into 50 ohms and minimum RF and IF attenuation

>6 GHz typically <-95 dBm

Noise Spectral Density dBm/Hz (Displayed average noise level [DANL])

No signal input, RF input terminated into 50 ohms and minimum RF and IF attenuation, pre-amplifier on (model dependent)

Frequency (within operating range)	3030A	3035	3030C	3035C	3036
<500 MHz	<-145,		<-2	135, -148	Тур.
≥500 MHz, ≤1 GHz	-152 Typ.	<-135,			
>1 GHz, ≤3 GHz	<-140, -150 Typ.	-140 Typ.	<-140, -	147 Typ.	<-140, -147 Typ.
>3 GHz, ≤5.8125 GHz					
>5.8125 GHz, ≤6 GHz					<-137,
>6 GHz					-147 Typ.

IF OUTPUT (3030A, 3035 ONLY)

Frequency center

3030A/3035 77.76 MHz

Level

3030A:

Relative to RF input (0 dB input attenuation selected)

Typically -3 dB between 330 MHz to 2.5 GHz

Typically -5 dB between 2.5 GHz to 3 GHz

3035:

Nominally -4 dB relative to RF input (0 dB input attenuation selected)

Bandwidth

Typically 100 MHz (-3 dB)

A/D CONVERSION

Resolution	
3030A/3035	14 bits
3030C/3035C/3036	13 bits
ADC Clock	
3030A/3035	103.68 MHz
3030C/3035C/3036	250 MHz
Sample Rate Control	
IF Data: same as ADC clock	
IQ Data:	
3030A/30351	6328.125 Sa/s to 85 MSa/s or 51.84 MSa/s with LVDS output enabled
3030C/3035C/3036	15.3 kSa/s to 250 MSa/s or 90 MSa/s with LVDS output enabled

(1) LVDS output sample rate is limited to a max. of 5MSa/s with option 198 enabled.

Sample Rate Resolution

0.1 Hz when the sample rate is entered as a real number

Sample rate can be entered as a fraction made up of integers

Sample Rate Accuracy

As per 10 MHz ref⁽¹⁾

 $^{\scriptscriptstyle (1)}$ add $\pm 2~\mu\text{Hz}$ when using generic re-sampling mode

 \leq 6 GHz <-95 dBm, typically -100 dBm.

Model	3030A		
Operating	Bandwidth (MHz)		
Frequency	<±0.1 dB Flatness	<±0.25 dB Flatness	<±1.0 dB Typ. Flatness
≤3 GHz	5	30	36

Model	3035			
Operating	, , ,			
Frequency	<±0.1 dB Flatness	<±0.25 dB Flatness	<±0.4 dB Flatness	<±1.0 dB Typ. Flatness
≤2.9 GHz	5	33		36
>2.9 GHz, ≤6 GHz			33	

Model	3030C/3035C		
Operating	Bandwidth (MHz)		
Frequency	<±0.1 dB	<±0.25 dB	<±1.0 dB Typ.
	Flatness	Flatness	Flatness
<500 MHz		15	20
≥500 MHz,	-		
≤1 GHz	5	33	36
>1 GHz,		07	00
≤6 GHz		67	90

Model	3036			
Operating	Bandwidth (MHz)			
Frequency		<±0.25 dB Flatness	<±0.65 dB Flatness	<±1.0 dB Typ. Flatness
<500 MHz		15		20
≥500 MHz, ≤1 GHz	5	33		36
>1 GHz, ≤13 GHz			67	90

Definition of Amplitude Flatness used

Phase Flatness (typical with correction on)

3030A/3035	± 0.03 radians pk-pk to 33 MHz
3030C/3035C/303	36:

<500 MHz	± 0.03 radians pk-pk to 15 MHz
≤1 GHz	± 0.03 radians pk-pk to 36 MHz
>1 GHz	± 0.03 radians pk-pk to 67 MHz

Data Output

A sample data block (equal to the data capture length) can be stored to the memory internal to the 3030 and then transferred to the controller via the PCI bus. Sample data can be continuously streamed out of the LVDS connector.

IF data samples have 16 bit resolution.

IQ data samples can be 16 or 32 bit resolution.

Note IF data output to LVDS is not supported on 3030, 3035C or 3036

Sample Memory

3030A/3035	128 M x 16 bit samples
3030C/3035C/3036	256 M x 16 bit samples

TRIGGERING

Trigger Mode

Single, repeat

Trigger Type

Edge, gated, none (software triggered)

Hardware Trigger Sources

Internal IF or IQ data (with user defined level threshold) and timer

External (LVDS, Trig bus, local bus, star trigger, TTL)

Trigger Polarity

+ve or -ve (Edge trigger), Gate high, Gate low (Gated trigger)

Trigger Functions

Pre-trigger

0 to sample length

Delayed Trigger

0 to + 2 G samples

Trigger Latency

0 to 1 sample at the output sample rate

Trigger hold off (303xC modules only)

Min trigger hold-off: 0 (default)

Max trigger hold-off: 65536 (0xFFFF) µs in steps of 1 µs

SPECTRUM ANALYZER PLUGIN

This Windows^m application software is designed for minimum screen resolution of 1024×768 useable for 600×800

Frequency Span Range

Variable between 2 kHz to 200 MHz and zero span

Resolution 1 Hz

RBW

Variable between 1 Hz to 10 MHz

Resolution 1 Hz

Window Type

NEBW: Gaussian 3 dB: Gaussian fixed: Blackman Harris 5 term

Sample Time

Up to 333 seconds

Resolution 1 ns

Measurements

Channel Power and Adjacent Channel Power

Adjacent channels: 2 upper and 2 lower or user defined up to 99 Channel filter alpha: 0.0 to 1.0 Channel spacing: up to 15 MHz

Channel width: up to 25 MHz

Occupied Bandwidth (OBW)

Percentage range: 1% to 99.99%

N Peaks

Frequency and power output for up to 10 signal peaks sorted in order of descending power

Average Power

The RMS average power for all IQ samples

Markers

4 markers plus delta marker

Marker Functions

Marker power and frequency with peak search, next peak, peak track Power and time

Frequency and time

Traces

Live, avg, max. hold

Spectrum trace, power versus time trace, frequency versus time trace Text results summary

INTERFACES

3010/11: PXI 1 compatible module

LO output (SMA) 10 MHz reference I/O (SMA x 2)

3030A/3035 PXI 1 compatible module

RF input, (SMA) Local oscillator input (SMA) IF output and input (SMA*2) 10 MHz reference (SMA*2) IF or IQ 16 bit LVDS data (VHDCI) TTL trigger (SMB)

3030C/3035C/3036 PXIe Hybrid compatible slot module

RF input, (SMA)

Local oscillator input (SMA)

10 MHz reference (SMA*2)

IF or IQ 16 bit LVDS data (VHDCI)

TTL trigger (SMB)

POWER CONSUMPTION (TYPICAL)

	3010/3011	3030A	3035	3030C	3035C	3036
+3.3v	50 mA	3 A	3 A	2.2 A	2.2 A	2.1 A
+5v	650 mA ⁽¹⁾	1.5 A	2 A	3.1 A	4.1 A	4.55 A
+12v	50 mA ⁽²⁾	300 mA	300 mA	350 mA	350 mA	700 mA
-12v	30 mA	150 mA	150 mA	50 mA	50 mA	100 mA
DC power		23 W	26 W	27.5 W	32.5 W	39.3 W

 ${}^{\scriptscriptstyle(1)}$ 250 mA transiently during power up

⁽²⁾ 3011 OCXO requires 300 mA startup reducing to 150 mA after 5 minutes

DIMENSIONS AND WEIGHT

Dimensions

3010/11 Single width 3U PXI module 3030/3030A/3030C /3035 Double width 3U PXI module 3035C/3036 Triple width 3U PXI module

Weight

3010	375 g (0.8 lbs)
3011	390 g (0.86 lbs)
3030A/3030C/3035	750 g (1.7 lbs)
3035C	1060 g (2.3 lbs)
3036	1110 g (2.5 lbs)

FREQUENCY REFERENCE

Source

3030A/3035:

External (front panel SMA), Internal (free running)

3030C/3035C/3036:

External (front panel SMA), Internal (PXI backplane)

Frequency

10 MHz

Level 3030A/3035: 0.4 V to 4 V pk-pk into 50 ohms or looped through 3030C/3035C/3036: 1.0 V to 4 V pk-pk into 50 ohms or looped through

GENERAL

The following general specifications are common to the 3010, 3011 and 303x.

Standard Warranty

24 months

Calibration Interval

Recommended 24 months

Electromagnetic Compatibility

EN 61326-1:2006, Emissions Class A Immunity Table 1

Safety

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control and laboratory use-Part 1, General requirements

Driver Software

VXIpnp compliant software driver

LOCAL OSCILLATOR INPUT

Frequency Range

1500 MHz to 3000 MHz

Level

303x input: Nominally 0 dBm

RATED RANGE OF USE

Operating Temperature

0 to 50°C, meets IEC-60068-2-1 and 60068-2-2

Operating Humidity

10 to 90% non-condensing, meets IEC-60068-2-56

CONDITIONS OF STORAGE AND TRANSPORT

Storage Temperature

-20 to +70°C, meets IEC-60068-2-1 and 60068-2-2

Storage Humidity

5 to 93% non-condensing, tested to IEC-60068-2-56

Shock

30 g peak, half sine, 9 ms pulse. Tested in accordance with IEC-60068-2-27

Random vibration 5 Hz to 500 Hz, 2.46 g rms non-operating. Tested in accordance with IEC-60068-2-64

COMPLIANCE

PXI hardware specification, revision 2.2, ECN 1 revision 1.0. PXI software specification revision 2.1 VXI plug & play specifications (VPP-2, VPP-3.x, VPP-4.x and VPP-7)

3035/3035 PXI-1 type module

303xC/3036 PXIe Hybrid Slot compatible module

3010/3011 CONDENSED SPECIFICATIONS

Specifications are common to the 3010 and 3011 unless otherwise stated.

Refer to 3010 Series datasheet for full specification.

LOCAL OSCILLATOR OUT

Frequency Range		3010/3011
1.5 GHz to 3.0 GHz		3030A/3035
Resolution		3030C
1 Hz		3035C/3036
Accuracy		
As frequency standard		Options
Output Power	3010/11 Opt 01	High speed frequence
Fixed level in the range -4 dBm to $+3 \text{ dBm}$		control)
Output Impedance	3030 Opt 198	Limit LVDS output s
50 Ω nominal		to 3035 only)
VSWR	Optional measu	rement suites (each su
<2:1	See separate da	ta sheets
FREQUENCY REFERENCE OUT (3011 ONLY)	3030 Opt 100	GSM/EDGE measur
Level	3030 Opt 101	UMTS UL uplink m
2 V pk-pk nominal square wave into 50 ohms	3030 Opt 102	CDMA2000/1xEV-D
Frequency	3030 Opt 102	suite
10 MHz	3030 Opt 103	WLAN measuremen
Aging Rate	*	
1 in 10 $^{\circ}$ per day, 1 in 10 7 per year	3030 Opt 104	WiMAX OFDMA me
Temperature Stability (0°C to 50°C)	3030 Opt 106	Bluetooth measurem
Typically better than $\pm 1 \times 10^{\circ}$	3030 Opt 107	LTE FDD measurer
Warm-Up Time		
	3030 Opt 108	LTE TDD measurer

VERSIONS, OPTIONS AND ACCESSORIES

When ordering please quote the full ordering number information.

Ordering	
Numbers	Versions
3030A	PXI wideband RF digitizer 330 MHz to 3 GHz
3030C	PXI wideband RF digitizer 250 kHz to 3 GHz
3035	PXI wideband RF digitizer 330 MHz to 6 GHz*
3035C	PXI wideband RF digitizer 250 kHz to 6 GHz
3036	PXI wideband RF digitizer 250 kHz to 13 GHz * Note subject to export control unless option 198 is fitted
3010	PXI RF synthesizer
3011	PXI RF synthesizer (including OCXO 10 MHz reference)
	Each supplied with

The 3030 Series and 3010/11 are each supplied with:

CD ROM containing drivers, PXI Studio application software, Spectrum Analyzer measurement plug-in and user documentation

CD ROM containing factory test data and calibration certificate

SMA-SMA Link cables

	3010/3011	x2 43139/738 (130mm)	
	3030A/3035	x2 43139/738 (130mm)	
	3030C	x1 43139/738 (130mm)	
	3035C/3036	x1 43139/739 (180mm)	
	Options		
3010/11 Opt 01	High speed frequency control)	switching (subject to export	
3030 Opt 198	Limit LVDS output san to 3035 only)	nple rate to 5 MSa/s (applies	
Optional measur	rement suites (each supp	plied on a separate CDROM)	
See separate dat	a sheets		
3030 Opt 100	GSM/EDGE measurement suite		
3030 Opt 101	UMTS UL uplink mea	surement suite	
3030 Opt 102	CDMA2000/1xEV-DO suite	reverse link measurement	
3030 Opt 103	WLAN measurement s	suite	
3030 Opt 104	WiMAX OFDMA meas	surement suite	
3030 Opt 106	Bluetooth measuremen	nt suite	
3030 Opt 107	LTE FDD measurement suite		
3030 Opt 108	LTE TDD measureme	ent suite	
3030 Opt 109	TD-SCDMA measurer	ment suite	
3030 Opt 111	Generic measurement	suite	

For the very latest specifications visit **WWW.aeroflex.com**

When purchased as an upgrade, order as:

-		
RTROPT100/3030	GSM/EDGE enab	ole
RTROPT101/3030	UMTS uplink ena	ıble
RTROPT102/3030	CDMA2000/1xEV enable	DO reverse link
RTROPT103/3030	WLAN enable	
RTROPT104/3030	WiMAX OFDMA	enable
RTROPT106/3030	Bluetooth enable	
RTROPT107/3030	LTE FDD enable	
RTROPT108/3030	LTE (TDD) enab	le
RTROPT109/3030	TD-SCDMA enal	ole
RTROPT111/3030	Generic Measurer	nent enable

Service Options

W3010/103	3010 Standard extended warranty 36 months
W3030/103	3030 Standard extended warranty 36 months
W3010/103C	3010 Standard extended warranty 36 months with scheduled calibration
W3030/103C	3030 Standard extended warranty 36 months with scheduled calibration
W3010/105	3010 Standard extended warranty 60 months
W3030/105	3030 Standard extended warranty 60 months
W3010/105C	3010 Standard extended warranty 60 months with scheduled calibration
W3030/105C	3030 Standard extended warranty 60 months with scheduled calibration
	Optional Accessories
43139/738	SMA link cable (130 mm)
43139/739	SMA link cable (180 mm)
43139/783	SMA link cable assembly (230 mm)

- 23435/698 68 way VHDCI to SCSI-3 cable assy 1.8 m
- 23435/699 68 way VHDCI to VHDCI cable assy 1.8 m
- 46885/224 SMA connector saver

For the very latest specifications visit **WWW.aeroflex.com**

CHINA Beijing

Tel: [+86] (10) 6539 1166 Fax: [+86] (10) 6539 1778

CHINA Shanghai Tel: [+86] (21) 5109 5128 Fax: [+86] (21) 5150 6112

CHINA Shenzhen Tel: [+86] (755) 3301 9358 Fax: [+86] (755) 3301 9356

FINLAND Tel: [+358] (9) 2709 5541 Fax: [+358] (9) 804 2441

As we are always seeking to improve our products, the information in this document gives only a general indication of the product capacity, performance and suitability, none of which shall form part of any contract. We reserve the right to make design changes without notice. All trademarks are acknowledged. Parent company Aeroflex, Inc. ©Aeroflex 2011.

Tel: I+33I 1 60 79 96 00 Fax: I+33I 1 60 77 69 22 **GERMANY** Tel: I+49I 89 99641 0 Fax: I+49I 89 99641 160 **HONG KONG** Tel: I+852I 2832 7988 Fax: I+852I 2834 5364

FRANCE

INDIA Tel: [+91] 80 [4] 115 4501 Fax: [+91] 80 [4] 115 4502 JAPAN

Tel: I+811 (3) 3500 5591 Fax: I+811 (3) 3500 5592 KOREA Tel: I+821 (2) 3424 2719 Fax: I+821 (2) 3424 8620 SCANDINAVIA Tel: I+451 9614 0045 Fax: I+451 9614 0047 SINGAPORE

Tel: [+65] 6873 0991 Fax: [+65] 6873 0992

www.aeroflex.com

info-test@aeroflex.com

UK Stevenage

Tel: (+44) (0) 1438 742200 Fax: (+44) (0) 1438 727601 Freephone: 0800 282388 **USA** Tel: (+1) (316) 522 4981 Fax: (+1) (316) 522 1360

Fax: [+1] (316) 522 1360 Toll Free: 800 835 2352

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.

Part No. 46891/294, Issue 10, 10/11