

4000 kanálový analyzátor pro spektrometrii

Uživatelská příručka

1	Μ	CA4K přehled parametrů	. 3
2	Bl	okové schéma přístroje	. 4
3 Vnější připojení		ıčjší připojení	. 5
	3.1 3.2 3.3	Komunikační panel přístroje Signálový panel přístroje Požadavky na připojovací kabeláž	. 5 . 6 . 6
4	0	vládací software	. 7
	4.1 4.2 4.3	Hlavní okno programu Setup – nastavení parametrů měření Scone – digitální osciloskop	. 7 . 9 12
	4.4 4.5	Nastavení signálu pomocí osciloskopu Fnergetická kalibrace	12 16 18
	4.6 4.7	Měření plata detektoru/sondy	19 21
	4.8 4.9	Prohlížeč souborů Doplňujicí nastavení analyzátoru impulsů	22 24
	4.10 4.11	Obnovovač základní úrovně signálu Update firmware analyzátoru	27 28
	4.12	Klávesové zkratky	29

1 MCA4K přehled parametrů

Vstupy:

- Lineární vstup
 - o 0 až 5V
- Vstup pro jednožilovou scintilační sondu
 - o Vysoké napětí 0-1500V Max 1,3 mA; nebo 0-1250V 0,8 mA
 - o Velikost napětí nastavována softwarově
 - ο Tvarovací konstanta 1 μs
 - Kompenzace podkmitu pomocí víceotáčkového trimru, s kontrolou na vestavěném digitálním osciloskopu
 - o Zpětné čtení vysokého napětí pro diagnostické účely
- Rozlišení AD převodníku 12 bitů
- Vzorkování 80 MHz, Mrtvá doba 25 ns, nejkratší zpracovávaný puls 50 ns
- Monitorování vnitřní teploty pro diagnostické účely

Komunikace:

- USB 2.0 full speed, 12 Mbit/sec
- 4x TTL vstup pro obecné použití
- 4x TTL výstup pro obecné použití
- 3x LED indikátor
 - o Červená VN je zapnuto
 - o Žlutá blikání při komunikaci, rychle bliká při chybě komunikace
 - o Zelená napájení, bliká při měření

Napájení:

- 12V, stabilizované ze síťového adaptéru 1A
- vestavěná ochrana proti přepětí a proti přepólování

Zpracování signálu:

- Vestavěný digitální osciloskop pro kontrolu průběhu signálu
- Amplitudový analyzátor se zpracováním nakupených impulsů:
 - absolutní maximum
 - o první maximum
 - o nezapočítání nakupených impulsů
 - o počet nakupených impulsů pro vyhodnocení kvality měření

Analyzátor je koncipován tak, že do skříně přístroje se může dodat další příslušenství:

- Zdroj pro předzesilovač
- Baterie
- Druhý spektrometr
- Druhý VN zdroj

2 Blokové schéma přístroje

Přístroj obsahuje dvě signální trasy pro scintilační sondu a přímý vstup do převodníku AD.

Trasa pro scintilační sondu je navržena pro scintilační sondu s jednožilovým kladným napájením. Signál je odebírán snímacím odporem přes oddělovací kondenzátor a veden do tvarovacího předzesilovače s kompenzací podkmitu signálu. Následující lineární zesilovač s proměnným zesílením, upravuje amplitudu kladných impulsů z tvarovacího předzesilovače pro převodník AD.

Druhá přímá trasa signálu, je vybavena pouze oddělovacím zesilovačem, normujícím amplitudu pro převodník AD.

Převodník AD vzorkuje signál pro digitální zpracování v hradlovém poli FPGA.

Veškeré funkce zpracování signálu jsou implementovány v hradlovém poli FPGA. Hradlové pole zajišťuje dále komunikaci USB, řízení VN zdroje, nastavování zesílení, přepínání tras signálu, indikaci LED a obsluhu pomocných vstupů a výstupů.

3 Vnější připojení

Signály se připojují na dva panely přístroje – komunikační a signálový panel

3.1 Komunikační panel přístroje

Pozice	Význam	Popis
1	Konektor pro komunikaci	USB typ B
2	HV ON	červený indikátor vysokého napětí
3	Komunikace USB	Žlutý indikátor, při komunikaci s přístrojem bliká, při chybě komunikace bliká velmi rychle
4	Indikace zapnutí/měření	Zelený indikátor, při zapnutém napájení svítí, při probíhajícím měření bliká
5	paralelní vstup a výstup	4x výstup a4x vstup TTL
6	Vypínač napájení	-
7	Vstup napájení	Vstupní konektor napájecího adaptéru 5,5/1,2 mm 12V, 1A, stabilizované napětí, uprostřed +

Zapojení konektoru SUB-D 9 FEMALE paralelního výstupu.

Pozice	Popis
1	TTL out 1
2	TTL out 2
3	TTL out 3
4	TTL out 4
5	GND, Zem
6	TTL in 6
7	TTL in 7
8	TTL in 8
9	TTL in 9

3.2 Signálový panel přístroje

Pozice	Význam	Popis
1	Vstup scintilační sonda	Jednožilová sonda, napětí 0 až 1500V,
		konektor MHV nebo SHV
2	Zemní zdířka	Vztažný bod pro ochranu nulováním
3	Kompenzace scintilační sondy	Kompenzace podkmitu impulsu sondy
4	Vstup převodníku	Přímý vstup převodníku,
		0 až 5V, konektor BNC

3.3 Požadavky na připojovací kabeláž

Při připojování a instalaci přístroje dbejte následujících požadavků:

- Použijte kabeláž s maximální délkou 1.8 metru od každého konektoru do příslušného zařízení
- Napájení připojte kabelem s minimálním průřezem 0,75 mm²
- Komunikační port USB připojte kabelem dle specifikace USB 2.0 full speed
- Paralelní vstup a výstup připojte stíněným kabelem např. STP cat 5
- Scintilační sondu připojte dostatečně dimenzovaným koaxiálním kabelem např. RG58, s pracovním napětím alespoň 2000V
- Přímý vstup převodníku připojte koaxiálním kabelem se jmenovitou impedancí 50Ω

4 Ovládací software

Ovládací aplikace umožňuje základní měření s analyzátorem. Ovládací software je napsán s použitím .NET Framework 2.0

4.1 Hlavní okno programu

V programu je možno používat kurzor, pohyb kurzoru je pomocí kláves šipka vlevo vpravo, nebo pomocí myši označení části průběhu do bloku a stiskem klávesy ENTER roztažení zvoleného průběhu. Zpět do zobrazení plného rozsahu se dostanete stiskem BACKSPACE.

Parametry kurzoru jsou zobrazeny nad průběhem uprostřed, rozsahy kurzoru přímo v kanálech jsou vpravo nad průběhem

🖳 MCA4K SN:2011053100000003				
💽 🕘 🚬 💾 4096 СН 🕒 🛧 🕂 🖇	, 2 M·i· ?			
SPECTRUM	Sum:366 Lo:2571,0 Hi:2571,0	RAW Lo:2571 Hi:2571		
Start - měření spustí mě	ření spektra			
Stop - měření ukončí/př	eruší měření spektra			

Zero Counters - vynuluje vnitřní paměť analyzátoru včetně čítače času měření a mrtvé doby

Save - uložení dat spektra ve formátu CSV, TKA a CHN

Start time

20:36:59 12.07.2011 Start time - zobrazení času a data startu měření

Time - zobrazení času měření v sekundách

Busy [%] DTCA DTCP

1,4 Busy - zobrazení mrtvé doby měření v procentech, zároveň indikace že je aktivní korekce na mrtvou dobu analyzátoru (DTCA) a délku pulsu (DTCP).

699,9 Zobrazení nastaveného napětí na konektoru pro scintilační sondu

716,1 Zobrazení změřeného napětí na konektoru pro scintilační sondu

34,4 Zobrazení vnitřní teploty analyzátoru

0,7 Poměr nakupených impulsů k celkovému počtu impulsů. Pokud je aktivní nepočítání nakupených pulsů, a není žádný impuls bez nakupení, zobrazuje počet nakupených impulsů.

141566 ROI1 Počet impulsů v okně (Region Of Interest)

4096 CH	Ŧ
256 CH	
512 CH	
1024 CH	
2048 CH	
4096 CH	

Conversion Gain – nastavení rozlišení analyzátoru

Yaxis resulution - změna rozlišení na ose Y

Setup - nastavení parametrů měření

Scope - spuštění vnitřního osciloskopu

M Measurement - předdefinované měřicí algoritmy (Energetická kalibrace, měření plata sondy, definice oken ROI)

Visible informations – v menu je možno vybrat, jaké informace se budou zobrazovat s měřením spektra, v pravém horním rohu.

Spectrum file viewer – prohlížeč dříve uložených souborů CSV, umožňuje konverzi do TKA a CHN

 \mathbf{A}

Indikátor probíhající komunikace s analyzátorem, pokud probíhá komunikace, tak se otáčí

4.2 Setup – nastavení parametrů měření

🐒 MCA4K Setu	qu	
MCA4K registe	rs read OK	
Meas time [s]	10	DTC analyzer DTC Pulse
THRH	100	PUR
THRL	80	First MAX
Input select	PROBE -	🔲 Invert 🔲 Filter
ADC Offset	3007	Preamp PWR
BLR samples	2 *256	Limit 64 Base 32
High volt. [V]	0,0	HV Enable
Gain	x5 ▼	
TTL output	PIN1 PIN1	PIN2 PIN3 SET TTL
TTL Input	V PIN6 V PIN7	✓ PIN8 ✓ PIN9 GET TTL
High voltage HVI	DAC= A*High volta 2,639	ge +B Limit [V] 0 500
High voltage	readback	
Volt	age= A*HVADC	+B 0
X axis calibrat	ion	
X= A*chan	nel^2 +B*channel	+C X label
GET	Open	Save

Meas time [s] 10 Meas time - délka měření v sekundách

DTC analyzer - korekce času měření na mrtvou dobu analyzátoru

DTC Pulse DTC pulse - korekce času měření na délku pulsu – do mrtvé doby se započítává i délka pulsu

THRH100THRH – prahová úroveň, od které se započítává začátek pulsuv kanálech 0 až 4095

 THRL
 80
 THRL
 - prahová úroveň konce pulsu v kanálech 0 až 4095

Pro korektní funkci analyzátoru je třeba aby THRH>THRL, význam parametrů ilustruje následující obrázek

PUR Nepočítání nakupených impulsů analyzátorem

First MAX Amplituda pulsu počítaná analyzátorem je první maximum pulsu, nezaškrtnuto amplituda pulsu počítaná analyzátorem je absolutní maximum pulsu.

Filter Vstupní průběh bude filtrován (klouzavý průměr 8mi hodnot signálu za sebou)

			PROBE
Input select	PROBE	•	PROBE ADC IN

může být buď PROBE – vstupem je

předzesilovač scintilační sondy nebo ADC IN - externí vstup

Invert Input invert – inverze vstupních dat, v případě použití externího vstupu a analýzy záporných impulsů

Preamp PWR Preamp PWR – aktivace napájení předzesilovače (pokud je instalován rozšiřující modul)

ADC Offset	3007	ADC Offset - nastavování offset hodnoty na vstupu ADC
převodníku a	analyzátoru rozs	ah 0 až 4095, nemá stejný krok jako je šířka kanálu, pro
scintilační so	ondu je offset cc	a 3000, pro externí vstup cca 1000

BLR samples	2
BLR samples	2

*256 BLR samples – (Base Line Restorer) obnovovač základní úrovně signálu, počet vzorků *256 pod úrovní limit určených pro vyhodnocení základní úrovně signálu. Pokud je 0 obnovování je neaktivní.

Limit 64

	prahová úroveň signálu v kanálech, pod kterou se provádí vyho	odnocení
základní ú	ovně signálu.	

Base 32

úroveň v kanálech, kde je požadována základní úroveň signálu

High volt. [V] [U.U	High voltage - nastavení zdroje vysokého napětí rozsahu 0 až
1500 voltů, kalibrační křivk	a viz níže

🗹 HV Enable	HV enable – povolení vysokého	napětí
	1 5	1

Gain s proměnnýn	<mark>x5 →</mark> , m zesílením 1x až	x5 x5 x2.5 x1.7 x1.25 x1 5x	GAIN - nastavení	zesílení zesilovače
TTL output			³ TTL output - na	stavování digitálních
výstupů na p	pomocném konekt	toru		stavovalli digitaliloli
SET TTL	SET TTL - nas	stavení TTL výstu	ipu, nezávisle na zt	vytku nastavení

TTL Input	M F	MN6 🗹	PIN7	M PI	N8 🔽	PINS	TTL inpu	t - stav TTL vstupu na pomocném
konektoru							1	1 1
High voltag	je VDAC=	A*High 2.639	voltage	• +E	5	Limit [V] 00		
wysokého r	anětí -	a limitu	nasta	vení v	worké	ho nar	větí	nastaveni kalibračni křivky

High voltage readback A*HVADC +B Voltage= 0,068 0

nastavení kalibrační křivky

zpětného čtení vysokého napětí

[X axis calibration				
	X= A*channel^2 +B*ch	annel +C	X label		
	0 1	0	Channel		
l				·	nastavení kalibrační křivky osy

X a popisu osy X

GET TTL GET TTL - načtení stavu TTL vstupu, nezávisle na zbytku nastavení

GET Setup GET setup - vyčtení parametrů z přístroje

SET SET - nastavení parametrů přístroje

Open

Open - načtení parametrů přístroje ze souboru, pro nastavení přístroje je třeba stisknout SET

Save Save - uložení parametrů přístroje do souboru

Scope – digitální osciloskop 4.3

Vestavěný digitální osciloskop umožňuje kontrolu signálů z externího zdroje nebo z předzesilovače pro scintilační sondu

MCA4K uživatelská příručka

		Edge	Rise	• Sj	/nc Aut	:0	▼ Xre	s 250 n	s/div ▼ Y	íres 16 c	h/div	• 🖳)
Triglev		0		- 1	232	📄 Pil	e-Up Trig	ger	ADC OFFSE	т —	-0-		3000
Ypos	0			0									
Pretrig		()	- 1	20						Auto	set	Input invert
o pulse													
SCOP	'E	0us	0,25u	s 0,5u	s 0,7	5us 1	us Pr	etrîger	s 1,5us	1,75u	s2us	2,25ι	us 2,5us
													112ch
THRH													Of ob
													- 9001
													64cb
													0401
~~~~	w	^	~~~~	$\sim$	~~~	~~~	-m	~~~~	~~~~	~~~~	~~~	$\sim$	48ch
													32ch
													0ZCH
													40-1-

Start - spustí periodické vyčítání paměti osciloskopu

Stop - ukončí periodické vyčítání paměti osciloskopu

Save - uložení dat průběhu pulsu ve formátu CSV



osciloskop stále, Normal – čeká se na splnění podmínky triglev a Edge opětovné spouštění, Single – čeká se na splnění podmínky triglev a Edge (jednorázové spuštění)

250 ns/div	-
250 ns/div	-
500 ns/div	
1 us/div	
2 us/div	
4 us/div	
8 us/div	
16 us/div	
32 us/div	-

Xres 250 ns/div

32 us/div Xres - rozlišení časové základny na 1 dílek 250 ns, 500 ns,

1us, 2 us, 4 us, 8 us, 16 us, 32 us, 64 us, 128 us, 256 us, 512 us, 1024 us, 2048 us, 4096 us a 9192 us. Pozor změna rozlišení je provedena pomocí změny vzorkovací frekvence, může se objevit aliasing (nedodržení vzorkovacího teorému)

512 ch/div	•
512 ch/div	
256 ch/div	
128 ch/div	
64 ch/div	
32 ch/div	
16 ch/div	
8 ch/div	
4 ch/div	

Yres 512/div Yres - rozlišení na ose Y. Pro detailní studium průběhu je možné měnit rozlišení na ose Y, tato volba spolupracuje s volbou offset. Základní linie osy Y je dána volbou offset a rozlišení volbou Yres.

ADC OFFSET	0	3000	ADC Offset - nastavování offset hodnoty na
vstupu ADC pře	vodníku analyzáto	oru rozsah 0	až 4095, stejně jako v okně setup
Input invert analýzy záporný	Input invert – inv ch impulsů, stejně	verze vstupr z jako v okn	ních dat, v případě použití externího vstupu a ě setup
Triglev	—J—— [2	2048 T	riglev - úroveň spouštění osciloskopu, rozsah 0
až 4095.			
Pile-Up Trigger	Spouštění oscile	oskopu sigr	nálem nakupení impulsů.
Ypos U	0	Ypos	s - Pro detailní studium průběhu ie možné měnit
Základní linii os	y Y. Základní lini	e je dána vo	olbou Ypos a rozlišení volbou Yres.
Pretrig J celkových 256 b	ude zaznamenáno	69 P před podm	retrig - Pretrigger určuje kolik vzorků y ínkou Triglev a Edge
Vzájemný vztah	mezi Triglev a Pr	etrig znázoi	rňuje následující obrázek

14



Osciloskop obsahuje jednoduchý expertní systém, který napomáhá nastavení správného offsetu, THRL a THRH pro správnou interpretaci signálu analyzátorem

Autoset

Pretng	U		128				Ir	nput invert	
pulse is present									
SCOPE Ous	1us	2us	3us	4us	Poetrigêras	7us	8us	9us	10us

Přibližné nastavení offsetu signálu je možné stiskem tlačítka Autoset.

# 4.4 Nastavení signálu pomocí osciloskopu

- Analyzátor zpracovává kladné impulsy ze vstupů ADC IN nebo PROBE.
- Při nastavování signálu je třeba nastavit nejdříve hodnotu stejnosměrného offsetu signálu. Pro nastavení vstupu z ADC IN použijte výchozí hodnotu ADC OFFSET 1000, pro vstup PROBE výchozí hodnotu ADC OFFSET 3000.



• Dále nastavte zobrazení osciloskopu pomocí Y axis resulution a Y pos tak, aby byli viditelné obě meze THRH a THRL. Pokud používáte předvolené nastavení THRH=100 a THRL=80 nastavte Ypos=0 a Yaxis resolution na 16/div



• Pomocí změny ADC OFFSET a případně změnou úrovní THRH a THRL docilte stavu, kdy je základní linie signálu pod úrovněmi THRH a THRL a zároveň nedochází k saturaci do nulové úrovně signálu.

MCA4K uživatelská příručka

MCA4	K Scop	e												- C X
		Edge	Rise	•   S	iync 🛛	uto	-	Xres	250 ns/	di 🔹 Y	res 16	:h/div	• 1	<u>.</u>
Triglev		0		- [	1232		Pile-U;	o Trigge	r A	C OFFSE	т —	0		3000
Ypos Proteio				_ (	)	-						Δ*	onat	logit invert
no pulse		0			20							Aut	USCL	
SCOF	PE (	)us	0,25us	0,5ι	0 au	,75us	s1us	Pret	îgers	1,5us	1,75u	ıs <mark>2</mark> us	2,2	5us 2,5us
THRH														96ch
														-BOCH
~~~~	w	·	~~~~	~	~~			- 	~~~	~~~			~~~	64ch
														32ch
														16ch ADC Zero

• Přepněte Y axis resolution na hodnotu 512/div, přiveď te pulsy na zvolený vstup

🔁 МСА4	K Sco	pe	-		-								_ 🗆 🗙
		Edge	Rise	▼ Sync	Auto	•	Xre	5 250 ns	/div 🔹 🗋	res 512 c	:h/div	•	
Triglev	-0			433		Pile-Up	o Trig	ger /	ADC OFFSE	т —	0		3000
Ypos	0-			0									
Pretrig	-	()	120							Autos	et	Input invert
pulse is pre	sent												
SCOP	E	0us	0,25us	0,5us	0,75ı	us 1us	Pre	etriger	1,5us	1,75us	2us	2,25	us 2,5us
													—1792ch
													—1536ch
								/	\backslash				1280ch
								/					1024ab
													1024CH
													—768ch
Trigge	r						$\left \right $						—512ch
						/							256ch
THRH						~							ADC Zero

- V případě použití vstupu ADC IN upravte velikosti pulsů změnou zesílení signálu na výstupu připojené aparatury.
- Velikost pulsů na vstupu PROBE můžete upravit změnou velikosti vysokého napětí nebo změnou parametru GAIN v setupu.

4.5 Energetická kalibrace

Okno energetické kalibrace se vyvolá z menu M Measurement, položka Energy calibration

MCA4K Energy C	MCA4K Energy Calibration [keV]										
	Channel	Energy									
Point 1	0	0									
Point 2	500	500									
Point 3	1000	1000									
Point 4	2000	2000									
Point 5	3000	3005									
Point 6	4000	4010									
	Compute										
1,0775E-06 *x^2	1,0775E-06 *x^2+ 9,9814E-01 *x+ 3,2355E-01 [keV]										
Open	Save	To Setup									

Program umožňuje provést výpočet energetické kalibrace pomocí metody nejmenších čtverců až v šesti bodech spektra. Pro zadání jednotlivých kalibračních bodů je třeba zadat kanály spektra a odpovídající energie. Kanály je možno zadat i z měření spektra, při současně otevřeném okně energetické kalibrace, pokud je zadávací kurzor v jednom z polí Channel

0

Open

V okně měření spektra, pokud je pouze označen jeden kanál (není v bloku) stisknete klávesovou zkratku Alt + Enter.

Kalibrace se provede stiskem tlačítka Compute

Vypočtená rovnice energetické kalibrace se objeví v řádku, pod tlačítkem Compute

1.0775E-06 *** 2+ 9.9814E-01 *	x+ 3 2355E-01 keVI
1,0770E 00 X 210,0014E 01 7	X1 0,2000E 01 [K0 V]

Open - načtení bodů energetické kalibrace ze souboru.

Save – uložení bodů energetické kalibrace do souboru.

To Setup Zápis hodnot rovnice energetické kalibrace do setupu přístroje, změna hodnot na ose X spektra.

V případě že je zadán pouze jeden kalibrační bod (kalibrační křivka je přímka a prochází počátkem) nebo dva kalibrační body (kalibrační křivka je přímka s posunutím) je použit prostý výpočet rovnice přímky. Pro tři nenulové kalibrační body je použit výpočet kalibrační křivky jako polynomu druhého stupně, pro čtyři a více bodů s použitím metody nejmenších čtverců.

Měření plata detektoru/sondy 4.6

Okno měření plata se vyvolá z menu M Measurement, položka Plateau curve

MICA4K Plateau curve					
● ● 🗎 ♠ 🕂 i •					
Start voltage 🚺 Voltage step	50,0 Steps	20 End \	Voltage 1000		
Delay [s] 3 Time [s]	10 WindowL	0 Wir	ndowH 8191		
PLATEAU		Sum:0 Lo	o:,0 Hi:,0		4
1000					Status IDLE
750					
Court					
500					
250					
,0 ,0	249,7	499, Volta	,8 7 ge	49,9	1000,0

Význam ikon na panelu nástrojů je podobný jako při měření spektra

Start měření plata

Stop měření plata

Save - uložení dat průběhu pulsu ve formátu CSV, TKA a CHN

Yaxis resulution - změna rozlišení na ose Y

Visible informations – v menu je možno vybrat, jaké informace se budou zobrazovat s měřením plata, v pravém horním rohu.

Start voltage	0
---------------	---

Voltage step

50,0

Start voltage – počáteční napětí měření plata

Votage step – dopočítaná velikost kroku napětí při plata

Steps 20	Steps – počet kroků napětí při měření plata
End Voltage 1000	End voltage - koncové napětí měření plata
Delay [s] 3	Delay – prodleva po nastavení vysokého napětí, před začátkem měření
Time [s] 10	Time – délka měření při konstantním napětí
WindowL 0	Window low – počáteční kanál měřicího okna pro počítání impulsů
WindowH 4095	Window high – koncový kanál měřicího okna pro počítání impulsů

Indikátor probíhající komunikace s analyzátorem, pokud probíhá komunikace, tak se otáčí

Výsledná naměřená závislost může vypadat např. takto (Sonda NS9502E a 137Cs):

4.7 Zadání ROI

Okno zadání ROI se vyvolá z menu Measurement, položka ROI input

🐒 MCA4	IK ROI Input	×
	Channel LO	Channel HI
ROI1	0	4095
ROI2	0	4095
ROI3	0	4095
ROI4	0	4095
	OK	

Program kontroluje správné zadání ROI – počet kanálů. Pokud je číslo počátečního kanálu (Channel LO) vyšší než koncové (Channel HI), počítá se součet počtu impulsů v ROI tak, že jsou sečteny všechny impulsy mimo zadanou ROI. Standardně se počítá součet impulsů od počátečního kanálu do koncového včetně.

4.8 Prohlížeč souborů

Okno prohlížeče souborů se vyvolá z lišty nástrojů hlavního okna kliknutím na ikonu **?**

Open - otevření souboru spektra ve formátu CSV

Save - uložení dat průběhu pulsu ve formátu TKA nebo CHN

Yaxis resulution - změna rozlišení na ose Y

Obsah otevřeného souboru je zobrazován ve třech záložkách Spectrum, Setup a Info. V záložce spectrum je graficky znázorněn průběh spektra, stejně jako v hlavním okně programu.

leas time [s]	10	DTC analyzer	DTC Pulse	High voltage				
	100			HVDAC=	A*High volta	ge +B	Limit [V]	
нкн	100		PUR		2,639	U	000	
HRL	80		First MAX	High voltage readba	ck	_		
put select	PROBE -	lnvert	Filter	Voltage=	A*HVADC	+B		
DC Offset	3004				0,000	U		
ILR ont	2			X axis calibration				
LR Limit	64			X= A*channel^2	+B*channel	+C	X label	
II R base	32			0	1	0	Channel	
ich welt D/I	Weens coofs	UV Eachla						
ign voit. [v]	wrong coers							
iain	x5	J						

V záložce Setup jsou zobrazeny parametry analyzátoru použité při měření spektra

Význam jednotlivých parametrů je shodný jako v okně Setup, kapitola 4.2. Pokud chceme nastavit analyzátor na stejné parametry měření, stačí soubor CSV načíst v okně setup.

V záložce Info je zobrazena informace o celkovém a mrtvém čase, čas a datum začátku měření a počet měřicích kanálů obsažených v souboru

💶 МСА4К Sp	ectrum viewer [C:\Dokumenty\Martin\MCA4K\phosphor_gauge.csv]	- • ×
🕨 🖶 4	+	
Spectrum Set	up He	
Time [s]	100	
Dead time [s]	0	
Start time	20:47:34	
Start date	12.07.2011	
a	1000	
Channels	4036	

4.9 Doplňujicí nastavení analyzátoru impulsů

Analyzátor umožňuje nastavit, jak budou zpracovávány výcenásobné nakupené impulsy (pile-up)

Standardně analyzátor zpracovává absolutní maximum impulsu, který je ohraničen úrovněmi THRH a THRL.

Zaškrtnutím políčka "First MAX" analyzátor zpracovává první maximum impulsu, který je ohraničen úrovněmi THRH a THRL.

Zaškrtnutím políčka "PUR" (Pile-Up Reject) analyzátor nezpracuje (nezapočítá) impulsy, které mají lokální minimum. Analyzovaný impuls je ohraničen úrovněmi THRH a THRL.

Vyhodnocení lokálního maxima a rozhodnutí o PUR je provedeno podle následujícího obrázku

Pokud signál po dosažení svého maxima, začne klesat a klesá nejméně 100 ns, je tento stav vyhodnocen jako první maximum.

Pokud poté začne signál stoupat, jedná se nakupení impulsu. Buď se impuls se nezapočítává a inkrementuje se počet nakupených impulsů, nebo se vyhodnocuje absolutní maximum a inkrementuje se počet nakupených impulsů.

V prostředí se silným rušením, či při potřebě dosáhnout zlepšení poměru signál šum je analyzátor na vstupu vybaven volitelným filtrem, provádějícím klouzavý průměr s 8mi po sobě jdoucích hodnot signálu.

4.10 Obnovovač základní úrovně signálu

Obnovovač základní úrovně signálu – Base Line Restorer slouží pro stabilizaci polohy základní úrovně signálu při velkých změnách četnosti vstupních impulsů, zejména při použití střídavé vazby vstupního signálu.

Pro funkci obnovovače jsou použity dva základní parametry Base – požadovaná základní úroveň v kanálech a Limit – hraniční úroveň v kanálech, do které se časový průběh na vstupu považuje za klidový – bez impulsu. Třetím parametrem algoritmu obnovovače, je počet vzorků "Samples", pro který se vyhodnocuje základní úroveň signálu. Význam parametrů je ilustrován na následujícím obrázku.

Algoritmus čítá počet vzorků vstupního signálu nad úrovní base a zároveň pod úrovní limit. Pokud je počet vzorků menší než 0,5*Samples dojde ke zvýšení úrovně offset. Naopak, pokud je počet vzorků větší než 0,5*Samples dojde ke snížení úrovně offset, tak aby byl stejný počet vzorků nad i pod úrovní Base.

4.11 Update firmware analyzátoru

- 1. Před změnou firmware je nutno zajistit následující podmínky:
 - Odpojte všechny kabely od analyzátoru, vyjma kabelu USB
 - Zajistěte nepřerušitelné napájení analyzátoru
 - Zajistěte nepřerušitelné napájení propojeného počítače
 - Na počítači pro update firmware pokud možno nespouštějte jiný program než program MCA4K
- 2. Okno update analyzátoru se vyvolá stiskem Ctrl + alt + U = v aktivním okně setup.

MCA4K update tool	
	File
	Update
	Exit

3. Vyberte alternativní firmware analyzátoru stiskem tlačítka "File"

4. Proces update započne stiskem tlačítka "Update", první částí procesu je zápis firmware do přístroje

File
Update
Exit

5. Po zápisu následuje verifikace obsahu paměti

File
Update
Exit

6. Proces je ukončen výpisem "Verify OK"

7. Firmware bude aktivní, po vypnutí a zapnutí analyzátoru.

- 8. Pokud proces neskončí výpisem "Verify OK":
 - nevypínejte přístroj
 - ukončete program
 - odpojte kabel USB od počítače
 - vyčkejte cca 20 sekund
 - připojte kabel USB k počítači
 - spust'te program
 - proces update firmware opakujte od bodu 1.

4.12 Klávesové zkratky

Ctrl + C	Okno spektrum, prohlížení spektra, osciloskop a plato: přenese aktuální obsah okna do clipboardu windows jako obrázek
Ctrl + alt + M	Okno setup: odblokování nastavení kalibrační křivky vysokého napětí a limitu nastavení vysokého napětí
Ctrl + alt + R	Okno setup: blokování nastavení kalibrační křivky vysokého napětí a limitu nastavení vysokého napětí
Ctrl + alt + V	Okno setup: Zobrazí verze ovladače FTDI
Ctrl + alt + U	Okno setup: Update firmware analyzátoru
Alt + Enter	Okno energetická kalibrace: V okně měření spektra, pokud je pouze označen jeden kanál (není v bloku) stisknete klávesovou zkratku Alt + Enter, aktuální číslo kanálu se vloží do energetické kalibrace.